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S I N G U L A R  P O I N T S  O F  D E F O R M A T I O N  P R O C E S S  A N D  C R E E P  

B U C K L I N G  O F  A C Y L I N D R I C A L  S H E L L  

M. N. Kirsanov and V. D. Klyushnikov UDC 539.376 

To analyze buckling of rheological systems, a variant of the pseudo-bifurcational approach was presented in [1] which 
refines the earlier version [2] in its statement of  the problem. The basis of the approach is the concept of  a singular (or pseudo- 
bifurcational) point of the formation process. When this point is attained, the system reacts critically to specifying the 
increments of the higher derivatives of the deflection as the initial data for disturbed motion. The lower derivatives and the 

deflection itself increase unlimitedly here. The first point of the obtained sequence coincides with the criterion in [3]. 

The criterion [1] is used in the present study to solve three-dimensional problems. The basis of  the solution is the elastic 
equivalent method, the essence of which is to split the problem into two problems. In the first problem the critical load of the 
corresponding elastic structure is calculated. In the second problem , which is connected with def'ming the relation only, a 

certain modulus expressing the increment of stresses in terms of increment of strains upon attainment of a singular point is 
found. Replacement of the Young's modulus in the first problem by the determined one (modulus of  the elastic equivalent) gives 

the final solution. 
To reveal the singular poifits, a system of equations is set up, which we will call the def'ming one. In the case of finding 

the singular points directly (which is possible in the simplest cases), such a system is formed for the increments of  deflection 
and its derivatives with the help of equilibrium equations. In the elastic equivalent method the defining system connects creep 

strain increments with its derivatives with respect to time. 

In contrast to [1] we will number the singular points starting from the first order. Thus, a pseudo-bifurcational point 

of order N (in the refined statement) corresponds to a singular point of order N + 1. 

1. Let us write.the relation of strain theory [4] 

Here eij is the strain and Sij is the stress deviator: 

eij = (e/S)Sij" (1.1) 

Sij = trij - tSijakk/3; 

S and e are the intensities of the corresponding quantities 

(1.2) 

S 2 = SijSij; e 2 = eijeij. 

We choose the defining relation in the power form 

(1.3) 

ppa = AS n, (1.4) 

Pij = eij - Sij/(2G); (1.5) 
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p2 = PijPij. (1.6) 

Convolution of (1.5) with (1.1) to (1.3), with (1.6) taken into account, yields p = e - S/(2G). With this equality it follows 
from (1.1) and (1.5) that 

Pij = (P/S)Sij. (1.7) 

To derive the defining system of equations specifying singular points, certain identities will be required. We will 
confine ourselves to consideration of the basic process with constant stress deviators Sij = const. 

The first group of identities relates to the parameters of the basic process. Let us prove that 

Pij (k) = Pij(p(k)/p), k = 1, 2, 3 . . . .  (1.8) 

The index (k) indicates the order of the derivative with respect to time. Differentiating (1.7) k times with Sij/S = const, we 
have 

Pij (k) = (Sij/S)p(k), k = I, 2, 3 . . . .  

Replacing Sij/S by P'ij/P in accordance with formula (1.7), we obtain the required identity (1.8) immediately. 
One of the basic quantities in the derivation will be the tensor quantity 

Kijmn = SijSmn/S 2 = PijPmn/P 2, (1.9) 

having the property 

that 

Kijk/Kk/rrm = Kijmn (1.10) 

The second group of identities relates to the parameters of the disturbed process. Using (1.6) and (1.8), we can prove 

&p(k) = Apmn(k)Pmn/P, (k = 0, 1, 2 . . . .  ). (1.11) 

Multiplying (1.11) by Sij, we find 

SijAp(k) = (PijPrnn/p2)SAPmn (k) = KijmnSApmn(k) (1.12) 

One more necessary identity follows from (1.7), (1.9), and (1.12) 

Ap(k)Pij = PKijrrmAPmn(k) (1.13) 

To ascertain the regularity of formation of the system of equations and the elastic equivalent matrix chosen, it turns 
out that a few equations are sufficient for consideration. We confine ourselves to the third order of the system. 

We differentiate the equality (1,7) twice with respect to time: 

S i jP+ Sijl5 = PuS + PijS; (1.14) 

~,,p + 2S,,h + s,); = ~;,fi + 2h,,s + p,2r 
(1.15) 
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and also the defining relation (1.4): 

"1;1 )" + c tp" - l i  )2 .= A n S S , , - 1 ;  
(1.16) 

};}," + 3at '~- 'b};  ~ a ( a  - 1)p~-'i,3 = A n ( S " - ' S  + (n - 1)$2). 

We linearize (1.7), (1.14), and (1.15) taking account of the assumed restriction Sij = 0: 

pAS O + SoAp = PijAS + SApij; 

pASij + lbASij + SijAf9 = PijAS + I~ijAS + SAI~ij; 

(1.17) 

(1.18) 

(1.19) 

pA3 ~ + 2iJA~S o + S~jAp + "pASo = p~A3 + 2~,AS + p~iAS + SA~b~j. (1.20) 

Let us eliminate the increments AS, AS, and .A~ from the system (1.18) to (1.20). To this end we linearize (1.4), 

(1.16), and (1.17): 

AS = S(pAI5 + t~tbAp)/(npp); (1.21) 

AS = S(t '~A~ + 2a t ' bAh  - ,~b2zXp)/(, ,hp');  (1.22) 

AS = S(p3AIj'+ 3ap2"pAp - 3app2A'p + a(a + 1)'p3Ap)/(npp3). (1.23) 

The basic problem of the elastic equivalent method is that of defining the relation between increments of stressed and 
strain corresponding to a singular point. For convenience of calculations we define first the relationship between the increments 

of creep stresses and strains. We assume that the following relation is valid: 

ASij(k) = (S/p)(aKijmn + b6im6jn)Apmn (k), (1.24) 

where a and b are unknown coefficients. 
Let us transform the right-hand sides of the system (1.18) to (1.20). With the help of identities (1.8) we replace ibij 

by (lb/p)pi j and ~, ij by (~IJ'/P)Pij. Then we eliminate the expressions Pijas(k) (k = 0, 1, 2 . . . .  ) from the system by utilizing the 
equalities (1.21) to (1.23) transformed with the identities (1.13) taken into account. 

We express the increments ASij (k) on the leR-hand side of the system (1.18) to (1.20) in terms of Aprrm (k) with the help 
of (1.24). Utilizing identities (1.12), after certain transformations we obtain the system sought for: 

(1.25) Ap,,,,,lCa/n - a - 1)Kj,,,,, + (1 - b)b~,,,bj,,l + (p/p)Kj, , ,Ab,=/n = 0; 

(1.26) 

At, ( b / t ' ) ( a K  + ha,,,6,,,) - Zxi,,,,,{l(1 + 2 a ) / n  - 1 - alK~., .  
n u l  q m l l  

+ (1 - b)d,,,,e~j,,} - (t'/h)K,,,,,,,Zx};,,,,,/n = 0; 
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~p,,,,,O;/p)2a(aK ..... + t~ . ,~ j , , )  - 2~h,,,,,(h/p)(aK .... + b ~ , , ~ , . )  

+ Ap,,,,, {[(3a + 2 ) /n  - 1 - a ]Ki,,,,, + (1 - b)$ , ,b j . }  + ( l , / f i ) K j , . A p ' / n  = O. 
(1.27) 

If  two or three more equations of the system are deduced by raising the order of the defining relation, one can 

determine the regularity of their formation. Thus, we write the N-th equation of the system (1.25) to (1.27) 

N - 2  

(aKj,.,. + b~,~j.) ~ CY-~u, "pN-~-~ApC~/p ~-~  
k r N - 2 - k  . . . .  - -  Ap~. {[(N 

kf f i0  

- 1 + N a ) / n  - I - a ]Kj,,,,, + (1 - b)c3,,,,bj.} - ( p / h ) K j ~ , A p C U , ) / n  = O, 

where the functions r (k = 0, 1 . 2  . . . . .  N) have the form 

~1'o = 1, ~'i = - a / p ,  ~2 = a ( 1 - +  2 a ) / p  2, g'3 = - a ( 1  + 2ct)(2 + 3 a ) / p  3 . . . .  

t/,N§ 1 = -~/,~,[(N + l)c~ + N ] / p , N  = 0,1,2 .... 

System (1.25) to (1.27) defines three singular points. We will find singular point of  the N-th order from the condition 

of vanishing of the determinant of system of N tensor equations with unknown and known quantities APij (k) (k = 0, 1, 2 . . . . .  

N-I) and APij(N). To this end we will utilize the following method for setting the determinant. Putting Apij(N) = 0, we 

transform the defining system to the homogeneous one. We eliminate the unknowns APij(k) (k = 1, 2 . . . . .  N-l)  in consecutive 

order and obtain the equation for z~Pij: 

APijAijmn = 0. (1.28) 

Singular points are determinate from the condition of degeneration of the defining system, which is equivalent to Aijmn = 0 

in view of the independence of  the components AkPi j. The unknown coefficients a and b of the elastic equivalent having the 

form (1.25) are determined from this equality. 

Let us determine the singular point of the first order. We put AlSrnn = 0. Equation (1.25) implies (1.28) immediately. 

The quantities Kijmn and t$imt$jn cannot be proportional. Equating the corresponding factors to zero separately, we obtain a 1 = 

a 1 = ~/n-1 and b I = 1. 
To determine the singular point of the second order, it is necessary to consider the system (1.25) and (1.26) with AlSrnn 

= 0. Having eliminated Apm n, we reduce the system to the form (1.28). Having expressed APrnnKijmn from (1.26) and 

substituted it into (1.25), we have 

Ap,,{K0,,,Ia -- z + 1 -- b + z / ( 1  + 2a - z) l + n~,~,(1  - b)} = 0, 

where 

z = (a + b)n. (1.29) 

Setting the coefficients of t~imt~jn equal to zero, we get b = 1. Hence the coefficient of Kijmn takes the form [z 2 - 3az + 

a(1 + 2o0]/(1 + 2ct - z). The numerator of this expression coincides with the polynomial B 2 [1]; consequently, for z we have 

the solution z = ~2. Thus, for the singular point of  the second order we determine the coefficients of  the elastic equivalent 

matrix a 2 = ~2/n - 1 and b 2 = 1. 

a 2 = ~ l n -  1, b~ = I. 

Let us determine singular point of the third order. We assume A'lb'mn = 0 in equation (1.27) and eliminate A ~,mnKijmn 

and APmnKijmn from (1.26) and (1.27). Omitting simple calculations, we have 
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Ap,..{Kj,, , . ,Ict - z + n(l - b) + z(4a + 2 - z ) / 1 2 z  

+ (1 + 2a - z + n(1 - b))(2 + 3a - z)I I  + 3..c31.n(1 - b)} = 0. 

Equating the coefficient o f  6im6jn tO zero, we get b = 1. Hence the factor of Kijmn takes the form 

[ - z  3 + 6z 2 - a(4  + l l a ) z  + a ( 2 a  + l ) (3a + 2) 1/12z + (i  + 2a 

- z ) ( 2 +  3 a - z )  t. 

Numerator of this expression is the polynom B 3 [1] of variable z. Consequently for the crkical point of the third order we have 

z = ~3. Taking into account the notation (1.29), we obtain a 3 = ~3/n - 1 and b 3 = 1. 

In general case it is obvious that for the singular point of the N-th order the coefficients of the elastic equivalent matrix 

have the form 

aN = ~ y / n -  1, by = 1. (1.30) 

The quantity ~y depends on a and is determined numerically as a root of the polynomial B N. In the particular case 

~1 = a and ~2 2_ (3t~ ___ (a2 _ 4c01/2)/2. 

Now we reduce relation (1.24) obtained in the elastic equivalent to the more natural form 

ASij(k) = 2GijmnAemn(k) (1.31) 

To this end, by utilizing the equality (1.5) written in increments and substituting the determined coefficients (1.30) we reveal 

Aern n from (1.24). 

AS(k){c3,,,. ,,,,d,. + ( S / p ) ( a N K .  + O,,,dj.)/(2G)} = ( S /p ) (auKj , , , , ,  

+ ~,,,,~j,,)~EI,~]. 

Solving (1.32) for Stun (k), we obtain the relation (1.31) with the matrix 

Gijmn = CKijmn + BSimSjn/2; 

(1.32) 

(1.33) 

C = - GpS(~v - n) S (1.34) 
�9 (2Gpn + S(~) ' B = 7"  

The matrix (1.33) with coefficients (1.34) defines the elastic equivalent of media, which corresponds to the singular 

point of the N-th order. 

2. We illustrate the application of  the singular-point theory for the analysis of  buckling phenomenon of  thin-walled 

structures using the case of a cylindrical shell under axial compression. To this end we reduce the elastic equivalent matrix 

(1.33) corresponding to an arbitrary state of stresses to the form for the analysis of plane stresses, where the indices run from 

1 to 2 only: 

Aaij = EijmnAern n, i, j ,  m, n = 1, 2. (2.1) 

With a13 = a23 = a33 = 0 Eqs. (1.2) can be solved for the stresses: 
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Ao'ij = Sij q- Skkaij, i, j, k = 1, 2. (2.2) 

Simple calculations [2] with (2.2) and the condition of incompressibility Aekk = 0  (k = 1, 2, 3) enable us to express the matrix 

Eijmn in terms of the coefficients B and C or the matrix Gijmn: 

E ..... = 2Ccr,~cr,,,,/S 2 + B(~,,,6j,, + 6j5,,,,,), i ,],m,n = 1,2. (2.3) 

Note that the intensity of the stress deviator S appearing in (2.3) is calculated from the previous formula (1.3) in which 

summation is carried out over all components of the tensor (i, j = 1, 2, 3). 

We consider buckling phenomenon of a simply supported cylindrical shell of length l, wall thickness h, and radius R 
under axial compression. We assume that a relationship exists between the stresses and strains having the form (2.1) with the 

constant matrix (2.3). For simplicity the quantities B and C may be temporarily assumed to be constant, so that relation (2.1) 

will resemble outwardly Hooke 's  law for an anisotropic body (actually such an anisotropy does not exist in real elasticity). Let 
us determine the critical load in Euler's sense. We write the strain compatibility and equilibrium equations for the increments 
[2]: 

A81,22 + Ae2,11 -- 2A3",12 + W,tl /R = 0, AMij,i j + NijW,i j - AN22/R = 0. (2.4) 

Here e 1, e 2, and 3' are the strains of the middle surface, W is the deflection of the shell (the sign A may be omitted for the 

prebuckling state of the shell for which the deflection equals zero), the comma denotes derivative with respect to the coordinate, 
and x 1 and x 2 are longitudinal and circumferential coordinates. The increments of the moments and forces are expressed in 

terms of stress increments by the formulas 

I~, 2 1~2 

AM,j = f Aajzdz, AN j = f Aa,jz .  
-1~:2 -Jr2 

We will utilize the geometrical relations 

(2.5) 

Ae n = Ae I + zWH, Ae:2 = Ae: + zW.22, Ae~2 = A'/ + zWlz  (2.6) 

and the stress function 

(2.7) 
AN,, = F22 , AN22 = F , , ,  AN,2 = --Fl2" 

For a cylindrical shell compressed by stresses all  along the generator we have a22 = 0 and S = wc2/3ail. In that case 

from the relation (2.1) with elastic equivalent matrix (2.3) it follows that 

Aaii  = (3C + 2B)Ae H + BAe22 , Ao'22 = B(Ae H + 2Ae:2), Ao'12 = BAet2. (2.8) 

We rewrite system (2.4) expressing the increments of all quantities appearing there in terms of two functions: F and 

W. Let us transform the first equation of the system. We integrate (2.8) over the thickness bearing in mind the hypothesis of 

plane sections (2.6). We replace the stress integral by the forces by means of formulas (2.5) and solve the obtained system for 

the increments of strains of the middle surface: 

2ANll - AN22 (3C + 2B)AN22 - BANlt ANt2 (2.9) 
3Bh(2C + B) , Ay -- Bh 

We substitute expressions (2.9) into the first equation (2.4). Taking into account the replacement (2.7), we have 
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(3C + 2B)F,m ~ + 4(3C + B)FH22 + 2BF2222 + 3B(2C 

+ B)W, n h / R  = O. 

(2.10) 

We transform the second equation of the system (2.4). Utilizing (2.6) and (2.8), we calculate the increments of the moments: 

AMII = J((3C + 213)W.11 + BW22), AM22 = J B ( W I  t + 214:.22) , 

AM12 = J B W I  2. 

Here 

Ju2 

J = f z2dz = h3/12. 

Taking into account that the force of axial compression for the basic state is N l l  = trllh, we have the partial 

differential equation for deflection: 

h2[(3C + 2B)WAItt + 41t~V1122 + 2BW.2222 l / 1 2  (2.11) 

+ '~I ,W,  - F l~ / (Rh )  = O. 

The critical load for ax~symmetrical buckling can be easily determined from the system (2.10) and (2.11) if the 

variables Wand Fare  assumed to be independent of circumferential coordinate x 2 and deflection is chosen in the form w = U 

sing ~x 1 (/~ = miTt~l, where m 1 is the number of halfwaves along the generator). Omitting in this case simple calculations 

involving minimization of  critical load with respect to t~, we find 

a l l  = (h/R)x/B(2C + B) = a . (2.12) 

Comparing (2.8) with similar relations for an elastic incompressible material, we fred that C = 0 and B = 2E/3 for elasticity. 

Hence (2.12) implies the well-known expression for the critical stress in an elastic shell a 0 = 2hE/(3R). 

To analyze nonaxisymmetrical buckling we write the deflection W and the stress function F in the following form: 

W = U sin g /zx  1 sin ~Tx 2 and F = ~ sin #x 1 sin ~ = m2/R, where m 2 is a number of waves in circumferential direction). 

Hence the system (2.10) and (2.11) takes the form 

(;-: + 12Cr/2)~ - 3B(2C + B ) h U / R  = O, 'O/(Rh) + (h2~/12 (2.13) 

- a l 0 U  = 0 ,  

where 

• =/~2(3C + 2B) + 2r/2B(2 + r/2//~2). 

Equating the determinant of  the homogeneous system (2.13) to zero, we have 

( h2~/12 - cru)(• + 120/2 ) + 3B(2C + B ) / R  2 = O. 

(2.14) 

Hence we find the expression for the stress: 

3B(2C + B) h 2 

O'~1 -- R2(• + 12Cq 2) + "~ g. 
(2.15) 
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Let us determine the minimum value of a11 with respect to/z  from the condition 

(2.16) 

Two cases are possible here. Let the first factor O~rll/OK be equal to zero. Differentiating (2.15), we find that the minimum 

value of Oll occurs for g = 6a*/h2-12Cr/2: 

a l l  - Ch2~ 2. (2.17) 

Consider another solution resulting form (2. t6): 0x/0/z = 0. Differentiating (2.14), we find that the extreme value 

occurs for the value/z a = ~72~2B/(3C + 2B) or ~ = 2n2(x/2B(3C + 2B) + 2B) = 2nZz and corresponds to the quantity 

3z~(z~ + zc) 
(7 u -- 2R2(Z + 6C)~l 2 

1 
+ T o h2rl,2Z, where Z = ,/2B (3C + 2B) + 2B. 

Minimizing this expression with respect to the variable r/, we find that the stress a 11 has the minimum value when 7/2 

= 3/(Rh)-,fB(B + 2C)/[Z(Z + 6C)]: 

e l i  = a*~Zl(Z + 6C). (2. t8) 

If C < 0, then the load obtained for monaxisymmetrical buckling (2.17) or (2.18) is greater than that for 

axisymmetrical buckling ot l  = a*. This means that the nonaxisymmetrical case it impossible when C < 0. 

When C > 0 it is necessary to consider solutions (2.17) and (2.18), choosing that one which corresponds to the lower 

load. The qualitative difference between these solutions consists in the buckling mode predicted. Since the function a l l  increases 

with increasing 7/according to (2.17), it is obviously necessary to take the lowest value 7/ = 1/R which corresponds to one 

wave or the lateral buckling of a shell like a rod. It is evident that when the ratio h/R is sufficiently large (within the limits 

assumed in the technical theory of shells) the solution (2.17) will be less than (2.18). This is to be expected: thick-walled long 

sheIls can buckle in a lateral way as rods do, but in the case of  thin-wailed shells, dents appear. However,  practical calculations 

show that solution (2.18) is as a rule, 'realized. 

3. Let us consider the experiment [5] on buckling of shells made of alloy D16T and subjected to axial compressive 

loads at 250~ (data for shells Nos. 18 to 32). The parameters a and n were not presented in [5]. Using the creep curves 

presented there, we determine the rheological constants cr and n appearing in relation (1.4) using the approach of  [4]. Replotting 

these curves in logarithmic coordinates and taking into account inevitable errors, we f'md the ranges of values of  the unknown 

parameters: 0.6 < o~ < 0.8 and 3.5 < n < 4.2. We set ~ = 0.75 and n = 4. 

We compare the theoretical and experimental results in the r and e 0 axes, where co = o i i / o "  0 and e0 = EP11/~ We 

rewrite (1.34) in terms of  eo and co with (1.30) taken into account: 

C = 
E%w%, 2L~ (3.1) 

3 ( % + ~ ) ( % + ( a  u + I ) ~ ) ' B -  3 ( % + ~ ) "  

The roots of the first few polynomials B N, on which the singular points depend, have the following values [1]. 

~t = 0.75,~ 3 = 1,865, ~s = 2.998, r = 4,140, ~o = 5.286, ~1~ = 6,436. (3.2) 

The even polynomials have no roots [1]. For chosen rheological constants with (3.2) we calculate the values of  the 

coefficients a N (1.30) corresponding to the first singular points: a 1 = -0 .813 ,  a 3 = -0 .534 ,  a 5 = - 0 . 2 5 1 ,  a 7 = 0.035, a 9 

= 0.322, and a l l  = 0.609. 

The buckling mode depends on sign of C. It can be easily seen from (3.1) that in this case for singular points of the 

1st, 3rd, and 5th orders we have C < 0 and therefore axisymmetrical buckling occurs with the critical load (2.12). Substituting 

(3.1) into (2.12), we fred 
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o,~ ~ o 

-~ o 

o o,2 ' c,,~ 0,8 o,~ 1,o e o 

Fig. 1 

to 2 + eoco(a N + 2) + (co2 _ l)(a N + 1) = 0. 

The solution of the equation has the form 

e o = ( _+ x/4(a~ + 1) + aJaa~: - ~(ax + 2))/2.  (3.3) 

For instantaneous buckling (e o = 0) corresponding to Euler load co = 1, from the two solutions we take the physically 

valid solution with plus sign. Curves 1, 3, and 5 (see Fig. 1) are plotted for singular points of the corresponding orders in 

accordance with solution (3.3). 

The solution points ~7, ~9] and ~11 correspond to nonaxisymmetrical buckling. Of the two formulas (2.17) and (2.18), 

which are valid for the critical parameters of the stress-strained state, as is found from calculations, formula (2.18) gives lower 

stress at the same creep strain. Curves for the singular points ~7, ~9 and ~11 are plotted on the basis of the numerical solution 
of the equation following from (2.18), where the expressions for B and C (3.1) were substituted. The coordinates of the 

experimental points were calculated on the basis of the Euler load obtained from the experiment (a 0 = 98 MPa). In this way 

the initial imperfections of the shells were taken into account approximately. 

A characteristic thickening of the curves is seen, which corresponds to singular points of  higher orders. Though there 

is no upper bound of the singular points, it should be noted that the thickening of the critical curves coincides with the 

experimental data (or is close to them in spite of their considerable scatter). 
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